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LE'ITER TO THE EDITOR 

Self-diff usion coefficient of charged Brownian particles 

Walter Hess and Rudolf Klein 
Fakultat fur Physik, Universitat Konstanz, D-7750 Konstanz, Germany 

Received 8 July 1982 

Abstract. Starting from a Fokker-Planck equation and using a projection operator 
formalism and a mode-coupling approximation, the self-diffusion coefficient is calculated 
for a strongly interacting system of charged spherical Brownian particles. 

Charged polystyrene spheres in aqueous solution have served as model systems to 
study static and dynamic properties of strongly interacting systems of Brownian 
particles (Pusey and Tough 1982). The results of static and quasi-elasticlight scattering 
experiments can well be accounted for by a model which takes a screened Coulomb 
law and a hard core as pair potential and uses the Fokker-Planck equation for the 
distribution function of the momenta p i  and the coordinates ri as the basic transport 
equation. 

Concerning the static properties, it has been shown (Hayter and Penfold 1981, 
Hansen and Hayter 1982) that the above-mentioned pair potential and the mean- 
spherical approximation (MSA) can reproduce well the experimentally determined 
static structure factors S ( k ) .  With regard to the dynamics, it has been possible to 
calculate the dynamic structure factor S ( k ,  t )  by a projection operator technique and 
within a mode-mode coupling approximation (MMCA), which essentially reduces the 
dynamical properties to static ones. Using the MsA static structure factors one can 
therefore calculate S ( k ,  t )  without further assumptions. The agreement with the 
experimental results is quite satisfactory (Klein and Hess 1982). Therefore, we present 
in this paper a calculation along similar lines for one-particle properties, in particular 
for the self-diffusion coefficient, which is much more difficult to determine by light 
scattering. Only preliminary experimental results are known so far (Pusey 1979). 
They indicate a rather strong reduction of the self-diffusion coefficient due to the 
strong interactions among the macroions. This fact has also been observed in computer 
simulations (Gaylor el af 1979). 

The self-diffusion problem has been treated before by starting from the 
Smoluchowski equation, where it is assumed that it is sufficient to consider only the 
coordinates of the macroions as dynamical variables (Hess and Klein 1981, Ohtsuki 
1982). There are, however, indications that this procedure is not justified for the 
strongly interacting systems of polystyrene spheres (Hess 198 1). Therefore, we take 
the more general Fokker-Planck equation as our basic transport equation. 

Denoting by r the phase space point { P I , .  . . , p N ;  rl,  . . . , r ~ }  of our system of 
macroions, the Fokker-Planck equation reads 

(1) a m  i)/ai  = fwf(r, t ) ,  
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Here, m denotes the mass and bo the friction coefficient of a macroion and Fi is the 
sum of forces acting on particle i by all other particles. 

The equilibrium distribution is 

where U ( T )  is the sum of Verwey-Overbeck pair potentials 

u(r) = C U(rij), 
i < j  

(4) 

U(rii) = mo&d2@;(rii)-’ exp[-K(rij -41 ,  rij > d. ( 5 )  

The dielectric constant of the solvent is E and Go is the surface potential on the 
polystyrene spheres of diameter d. The screening constant is denoted by K and 
rii = Iri - rj 1. 

The self-diffusion propagator G ( r  - r’ ,  t - t‘) is the probability to find the tagged 
particle (having the index 1) at time t at r if it was at time t’ at r ’ .  We are using the 
solution of (l), which develops out of the constrained initial distribution 

f(r, 0)  = S(r’  - rl)fo(r). (6 )  
Therefore, f(r, t )  = exp(fi, t)f(r, 0) and 

G(r - r ’ ,  t - t ‘ )  = dT S(r -rl)f(r, t )  

t 3 t’, (7) 

5 
= (S(r  - r l )  exp[h(t-t’)]S(r‘-rl))o, 

where (. . .)o denotes an equilibrium expectation value using (3). Fourier transforming 
gives 

G ( k ,  t -t’ j  =(cl(k) exp[h(t - t ’ ) lc~( -k j )~  (8) 
where 

cl(k) = exp(-ik rl) (9) 

and G depends only on k due to the isotropy of the system. From a knowledge of 
G(k, t )  one can calculate a number of one-particle properties. The mean-square 
displacement is defined by 

W ( t )  = I d3r rZG(r, t )  = -4 a2G(k, t)/8kZ1,=, (10) 

and the velocity autocorrelation function is 

dZ a’ 1 Z( t )  = $(ul(t) * ~ ~ ( 0 ) )  - 7 W ( t )  = -1im 77 G ( k ,  t ) .  
O-dt k + O a t  k 

The self-diff usion coefficient is given by 

where i ( z )  is the Laplace transform of Z(t) .  
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We now calculate the self-diffusion propagator. For the Laplace transform of (8) 
one finds 

z d ( k ,  z ) =  l+(Cl(k)A[Z -Al-'c1(-k))o. (13) 

Using the operator identity 

[z -A]-'=[z -A6,]- ' ( l+AFc[z -A]-') 
with $c = cl(-k))o(cl(k) the projector onto cl(k)  and 6, = 1 -FC, we obtain 

d ( k ,  z )  = [z +d(k, z)k2]-' (15) 

where the generalised self-diff usion function 

has been introduced and 

j l (k )  = (Pl /m)c l (k) .  

D ,  = d(0, O), 

From ( l l ) ,  (12) and (15) the self-diffusion coefficient is 

and i ( z )  =d(O, 2). 

Since j l (k) ,  equation (17), is orthogonal to cl(k) we introduce the projector 

P j = S  .jl(-k))o(m/kBT)(R 'jl(k), k  ̂ = k/k, (19) 

d ( k ,  z )  = ( k B T / m ) / ( z  +m-lf(k,  2)) 

[ ( k ,  2) = t o  + % ~ l z  (k)dc,j[z - A d c , j ~ - ' d c . j f l z  (-k))o* 

f l , (k)  = [ - i k ( m v : ,  -kBT)+K, l c~(k ) .  (22) 

i (Z)=(kgT/m)[Z +lo/m + (P/3m)(Fiz[z -~~~c ,~I - 'FIz>I- '*  

and use it for the calculation of d ( k ,  z )  in the same manner as $c was applied for 
d(k, 2 ) .  The result is a generalised Stokes-Einstein relation for self-diffusion 

with 

Here, Qc,i = 6, - $ j  and 

(20) 

(21) 

Therefore, the velocity autocorrelation function is given by 

(23) 
The remaining calculation of the correlation function is performed by using a 

MMCA (Keyes 1977). Introducing the bilinear variable 

and the projection operator 

we approximate 6 , , i f lz(0))~= dc. jF1r)O=~bF1z)O in (21). The result for k = O  is 

where S(k)  = 1 +ch(k)  is the static structure factor 
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The remaining correlation function is now factorised as 

( b ( k ' )  e ~ p ( h d , , ~ t ) b ( - k ) ) =  ( ~ T ) ~ V - ' S ( ~  -k ' )G(k ,  t )NS(k,  t ) .  (27) 

In order to calculate D, from (18) and (20), it is sufficient to know t (0 ,O).  From (26) 
and (27) 

The self-diff usion propagator under the time integral is approximated by its free- 
particle expression Go&, r )  = exp(-Dok2t) and for S ( k ,  t )  we use the mean-field form 
(Hess and Klein 1981), SM&, t )  = S ( k )  exp[-Dok2t/S(k)]. Here, Do = ksT/lo is the 
diffusion constant of a free particle. In this way the self-diffusion coefficient becomes 

D, is now completely reduced to static properties of the system. 
Static light scattering experiments (Brown et a1 1975, Dahlberg et a1 1978, Griiner 

and Lehmann 1979) on polystyrene spheres in aqueous solution show clearly that 
these systems are strongly interacting even at volume fractions as low as 0.001; there 
is a well developed first diffraction peak in S ( k )  and S ( 0 )  is as small as 0.1. It is 
therefore not possible to use in (29) the Debye-Hiickel expression for S ( k ) .  Hansen 
and Hayter (1982) have extended an earlier theoretical approach developed by Hayter 
and Penfold (1981) who had calculated S ( k )  using the MSA on the basis of the pair 
potential ( 5 ) .  

We have used this approach for the static structure factors measured by Griiner 
and Lehmann (1979). The spheres in these systems have a diameter of 900A.  By 
fitting the rescaled MSA to the experiments at one concentration, the surface potential 
was determined to +bo = 73 mV and the screening parameter to C1 = 5000 A. In this 
way good agreement was found between the results of the rescaled MSA and experi- 
ments at other concentrations (Hansen and Hayter 1982). The concentration depen- 
dent structure factor obtained by this procedure is now used in (29); the result is the 

0 
0 2  0 4  0 6  0 8  1 

Ip . lo '  

Figure 1. Self-diffusion coefficient D. as a function of volume concentration for a system 
of charged hard spheres of diameter 900A. surface potential 73  mV and a screening 
length of 5000 A. 
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concentration dependent self-diffusion coefficient shown in figure 1. There is at first 
a fast, limiting-law-like drop in D,, followed by a rather large region of concentrations, 
where D, is only slowly decreasing. The numerical values of D, in this interval depend, 
of course, on the magnitude of Go and K .  

In view of the fact that a similar MMCA approach for the dynamical structure factor 
(Klein and Hess 1982) has given satisfactory agreement with the quasi-elastic light 
scattering experiments, it is believed that the calculation of the self-diffusion coefficient 
presented in this paper is a prediction of similar accuracy. More experimental work 
on D, for strongly interacting charged spherical macroparticles would be most welcome. 

We would like to thank Dr J Hayter, ILL Grenoble, and Professor J P Hansen, Paris, 
for providing us with their computer program to calculate S ( k ) .  
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